Forest calcium depletion and biotic retention along a soil nitrogen gradient.
نویسندگان
چکیده
High nitrogen (N) accumulation in terrestrial ecosystems can shift patterns of nutrient limitation and deficiency beyond N toward other nutrients, most notably phosphorus (P) and base cations (calcium [Ca], magnesium [Mg], and potassium [K]). We examined how naturally high N accumulation from a legacy of symbiotic N fixation shaped P and base cation cycling across a gradient of nine temperate conifer forests in the Oregon Coast Range. We were particularly interested in whether long-term legacies of symbiotic N fixation promoted coupled N and organic P accumulation in soils, and whether biotic demands by non-fixing vegetation could conserve ecosystem base cations as N accumulated. Total soil N (0-100 cm) pools increased nearly threefold across the N gradient, leading to increased nitrate leaching, declines in soil pH from 5.8 to 4.2, 10-fold declines in soil exchangeable Ca, Mg, and K, and increased mobilization of aluminum. These results suggest that long-term N enrichment had acidified soils and depleted much of the readily weatherable base cation pool. Soil organic P increased with both soil N and C across the gradient, but soil inorganic P, biomass P, and P leaching loss did not vary with N, implying that historic symbiotic N fixation promoted soil organic P accumulation and P sufficiency for non-fixers. Even though soil pools of Ca, Mg, and K all declined as soil N increased, only Ca declined in biomass pools, suggesting the emergence of Ca deficiency at high N. Biotic conservation and tight recycling of Ca increased in response to whole-ecosystem Ca depletion, as indicated by preferential accumulation of Ca in biomass and surface soil. Our findings support a hierarchical model of coupled N-Ca cycling under long-term soil N enrichment, whereby ecosystem-level N saturation and nitrate leaching deplete readily available soil Ca, stimulating biotic Ca conservation as overall supply diminishes. We conclude that a legacy of biological N fixation can increase N and P accumulation in soil organic matter to the point that neither nutrient is limiting to subsequent non-fixers, while also resulting in natural N saturation that intensifies base cation depletion and deficiency.
منابع مشابه
Geochemical characterization of the forest loess soils along a precipitation gradient in Northern Iran
Introduction: The loess-paleosol sequences in Northern Iran are important archives represent several cycles of Quaternary climate change and can be used to complete the information gap on loess between Europe and central Asia. Loess geochemistry reflects paleoweathering conditions and it can be used to determine the nature and provenance of loess deposits. In the Caspian Lowlands, a pronounced...
متن کاملInfluences of a calcium gradient on soil inorganic nitrogen in the Adirondack Mountains, New York.
Studies of the long-term impacts of acidic deposition in Europe and North America have prompted growing interest in understanding the dynamics linking the nitrogen (N) and calcium (Ca) cycles in forested watersheds. While it has been shown that increasing concentrations of nitrate (NO3-) through atmospheric deposition or through nitrification can increase Ca loss, the reciprocal effects of Ca o...
متن کاملRegulation of nitrogen mineralization and nitrification in Southern Appalachian ecosystems: Separating the relative importance of biotic vs. abiotic controls
Long-term measurements of soil nitrogen (N) transformations along an environmental gradient within the Coweeta Hydrologic Laboratory basin in western North Carolina showed a strong seasonal pattern and suggested that vegetation community typethrough its influence on soil properties-was an important regulating factor. Our objective was to determine the relative effects of biotic vs. abiotic fact...
متن کاملForest liming increases forest floor carbon and nitrogen stocks in a mixed hardwood forest.
In acid-impacted forests, decreased soil pH and calcium (Ca) availability have the potential to influence biotic and abiotic controls on carbon (C) and nitrogen (N) cycling. We investigated the effects of liming on above- and belowground C and N pools and fluxes 19 years after lime addition to the Woods Lake Watershed, Adirondack Park, New York, USA. Soil pH and exchangeable Ca remained elevate...
متن کاملInteractions of local climatic, biotic and hydrogeochemical processes facilitate phosphorus dynamics along an Everglades forest-marsh gradient
Ecosystem nutrient cycling is often complex because nutrient dynamics within and between systems are mediated by the interaction of biological and geochemical conditions operating at different temporal and spatial scales. Vegetated patches in semiarid and wetland landscapes have been shown to exemplify some of these patterns and processes. We investigated biological and geochemical factors sugg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ecological applications : a publication of the Ecological Society of America
دوره 23 8 شماره
صفحات -
تاریخ انتشار 2013